Acta Cryst. (1996). C52, 1113-1115

Bis- μ-hydroxo-bis[(benzyl)(nitrosyl-
 $N)\left(\eta^{5}\right.$-pentamethylcyclopentadienyl)molybdenum]

Peter Legzdins, Penelope J. Lundmark and Steven J. Rettig*

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1. E-mail: xtal@xrayl.chem.ubc.ca
(Received 24 November 1995; accepted 23 Januar 1996)

Abstract

The title complex, $\left[\mathrm{Mo}_{2}(\mathrm{OH})_{2}(\mathrm{NO})_{2}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)_{2}\right]$, was obtained in 19% isolated yield from the treatment of [$\mathrm{Mo}(\mathrm{NO})\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\left(\mathrm{OCMe}_{3}\right)\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)$] in tetrahydrofuran with $\mathrm{H}_{2}(276 \mathrm{kPa})$. A single-crystal X-ray crystallographic analysis confirmed its bimetallic nature, the near planarity of the central $\mathrm{Mo}_{2} \mathrm{O}_{2}$ core and the monohapticity of the $\mathrm{CH}_{2} \mathrm{Ph}$ ligands. The complex is diamagnetic $\left(\chi_{M}=-517 \times 10^{-6} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$ at room temperature and its ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$ indicates that it exists as a mixture of isomers in this solution.

Comment

In the preparation of the title complex $[\mathrm{Cp} * \mathrm{Mo}(\mathrm{NO})$ $\left.\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\right]_{2}(\mu-\mathrm{OH})_{2}$, (I), where $\mathrm{Cp}{ }^{*}$ is the η^{5}-pentamethylcyclopentadienyl anion, it is interesting that it is the metal-alkoxide linkage that is the preferred site of reactivity when a tetrahydrofuran solution of [$\mathrm{Cp} * \mathrm{Mo}(\mathrm{NO})\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\left(\mathrm{OCMe}_{3}\right)$] is exposed to H_{2} (276 kPa), the bimetallic product, (I), being isolable from the final reaction mixture in 19% yield. Complex (I) is an amber solid that is soluble in most common organic solvents except paraffin hydrocarbons. As a solid, it may be handled in air for short periods of time, but its solutions are air and moisture sensitive.

(I)

The spectral data exhibited by (I) are not particularly helpful in elucidating its molecular structure. In order to provide an unambiguous structural solution, single crystals of (I) were subjected to X-ray crystallographic analysis. An ORTEP diagram (Johnson, 1965) of the molecular structure of $\left[\mathrm{Cp} * \mathrm{Mo}(\mathrm{NO})\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\right]_{2}(\mu-\mathrm{OH})_{2}$ in the solid state is shown in Fig. 1.

Fig. I. Perspective view of the title molecule with 33% probability ellipsoids shown for the non- H atoms.

Overall, the geometric parameters of (I) closely resemble those established recently for $\left[\mathrm{CpMo}(\mathrm{NO}) \mathrm{I}_{2}(\mu-\right.$ OH_{2} (Faller, Chase \& Mazzieri, 1995), where Cp is the cyclopentadienyl anion. Complex (I) is a bimetallic species with each Mo atom at the center of a fourlegged piano-stool-type polyhedron. The metal atoms are bridged by two hydroxo ligands, forming a slightly asymmetric $\mathrm{Mo}_{2} \mathrm{O}_{2}$ core. The central four-membered ring is slightly non-planar [the maximum deviation from the weighted mean plane is 0.048 (3) \AA for atom $\mathrm{O}(2)$], with a fold angle of $2.7(1)^{\circ}$. The Mo-O bond distances are consistent with single Mo-O bonds, the average value for Mo-O single bonds being $1.900 \AA$ (Orpen, Brammer, Allen, Kennard \& Watson, 1989). Furthermore, the $\mathrm{Mo}(1) \cdots \mathrm{Mo}(2)$ and $\mathrm{O}(1) \cdots \mathrm{O}(2)$ separations of 3.5407 (9) and $2.355(5) \AA$, respectively, are not really short enough to be indicative of any bonding interactions between these pairs of atoms. A bond is customarily invoked if the distance between the two atoms is less than 1.25 times the sum of their covalent radii; the covalent radius of Mo is $1.30 \AA$, therefore, an Mo-Mo single bond could be invoked if the Mo-Mo distance was less than $3.25 \AA$. Since the benzyl groups (le ligands) and the bridging-hydroxo groups (3e ligands) are involved in simple σ bonds, the valence-electron count at each metal center in (I) is 18 . The molar magnetic susceptibility of the complex at room temperature of χ_{M} $=-517 \times 10^{-6} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ is consistent with this, thus confirming that it is diamagnetic in the solid state.

In solution, (I) most likely exists as a mixture of isomers. The solid-state molecular structure has the Cp * ligands trans with respect to each other; however, there are no steric reasons why this complex could not
also exist in the cis configuration, as is found in the solid-state structure of $\left[\mathrm{CpMo}(\mathrm{NO}) \mathrm{I}_{2}(\mu-\mathrm{OH})_{2}\right.$ (Faller, Chase \& Mazzieri, 1995). It is also possible to envision diastereomers for each of these geometric isomers.

Experimental

The complex $\left[\mathrm{Cp}^{*} \mathrm{Mo}(\mathrm{NO})\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\left(\mathrm{OCMe}_{3}\right)\right]$ (Legzdins. Lundmark \& Rettig, 1993) ($0.57 \mathrm{~g}, 1.3 \mathrm{mmol}$) was dissolved in tetrahydrofuran (40 ml). An IR spectrum of this redorange solution exhibited two absorption bands at 1595 and $1585 \mathrm{~cm}^{-1}$ attributable to the NO and $\mathrm{CH}_{2} \mathrm{Ph}$ ligands, respectively (Legzdins, Lundmark \& Rettig, 1993). This solution was pressurized to 276 kPa with H_{2} in a Fisher-Porter pressure vessel and the reaction mixture stirred for 4 d with no color change being evident. After this time, an IR spectrum of the reaction solution exhibited a single broad band at $1618 \mathrm{~cm}^{-1}$. The solution was taken to dryness in vacuo and the remaining residue extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{ml})$. The extracts were filtered through Celite ($2 \times 5 \mathrm{~cm}$) supported on a sintered glass frit and the filtrate concentrated under reduced pressure. Amber crystals of analytically pure (I) $(0.092 \mathrm{~g}, 19 \%$ yield) formed when the saturated solution was maintained at 243 K for 2 d .

Crystal data

$\left[\mathrm{Mo}_{2}(\mathrm{OH})_{2}(\mathrm{NO})_{2}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}-\right.$
$\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)_{2}$]
$M_{r}=738.63$
Monoclinic
$P 21 / c$
$a=15.822$ (4) \AA
$b=12.660(4) \AA$
$c=16.657(2) \AA$
$\beta=91.70(2)^{\circ}$ 。
$V=3335(1) \AA^{3}$
$Z=4$
$D_{x}=1.471 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-6S diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scans (North, Phillips \& Mathews, 1968)
$T_{\text {min }}=0.932, T_{\text {max }}=$ 1.000

8318 measured reflections 8036 independent reflections

Refinement

Refinement on F
$R=0.0400$
$w R=0.0399$

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=12.8-15.2^{\circ}$
$\mu=0.789 \mathrm{~mm}^{-1}$
$T=294.2 \mathrm{~K}$
Prism
$0.30 \times 0.25 \times 0.25 \mathrm{~mm}$
Amber

4156 observed reflections

$$
[I>3 \sigma(I)]
$$

$R_{\text {int }}=0.044$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 20$
$k=0 \rightarrow 16$
$l=-21 \rightarrow 21$
3 standard reflections monitored every 200 reflections intensity decay: 1.2%

$$
\begin{aligned}
& \Delta \rho_{\max }=0.52 \mathrm{e}_{\AA^{-3}}^{-3} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e}^{-3} \\
& \text { Extinction correction: none }
\end{aligned}
$$

$S=2.010$
4156 reflections
379 parameters
$n^{\prime}=1 / \sigma^{2}(F)$
$(\Delta / \sigma)_{\text {max }}=0.001$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	こ	$U_{\text {eq }}$
$\mathrm{Mo}(1)$	0.31558 (3)	0.46156 (3)	0.318 .36 (3)	0.0470 (1)
$\mathrm{Mol} 2)$	0.19914 (3)	0.50994 (3)	0.13731 (3)	0.0455 (1)
$\mathrm{O}(1)$	(0.3010(2)	0.42 .39 (2)	$0.1929(2)$	0.052 (1)
$\mathrm{O}(2)$	0.2192 (2)	0.5500 (3)	$0.2596(2)$	0.053 (1)
$\mathrm{O}(3)$	(0.4947 (3)	0.5256(4)	0.3047 (3)	$0.094(2)$
$O(+)$	0.1010(3)	0.3197 (3)	0.0913 (3)	0.098 (2)
$\mathrm{N}(1)$	0.4180 (3)	0.5081 (4)	0.3056 (3)	0.061 (2)
$\mathrm{N}(2)$	0.1399 (3)	0.3959 (3)	0.1189 (3)	0.059 (2)
C(1)	0.3492 (4)	0.2881 (4)	0.3406 (3)	0.057 (2)
C(2)	0.3687 (5)	0.3407 (4)	0.4119 (4)	$0.067(2)$
C(3)	0.2920 (6)	0.3733 (5)	0.4445 (4)	0.084 (3)
C(4)	0.2249 (5)	0.3399 (6)	0.3931 (5)	0.086 (3)
C(5)	0.2591 (5)	0.2836 (4)	0.3295 (4)	0.067 (2)
$\mathrm{C}(6)$	0.4126 (5)	0.2315(5)	0.2908 (4)	0.099 (3)
$\mathrm{C}(7)$	0.4531 (6)	0.3530(6)	0.4522 (5)	0.129 (4)
$C(8)$	0.2820 (8)	0.4167 (6)	0.5281 (4)	$0.180(5)$
$\mathrm{C}(9)$	().1339 (6)	0.3568 (8)	0.4080(7)	$0.185(5)$
$\mathrm{C}(10)$	$0.2109(6)$	0.2279 (6)	0.2651 (5)	0.122 (3)
C(11)	0.1941 (4)	0.5391 (5)	-0.0001 (3)	$0.069(2)$
C(12)	0.1835 (4)	0.6421 (5)	0.0334 (4)	0.066 (2)
C(13)	0.2603 (4)	0.6676 (4)	0.0753 (3)	0.057 (2)
$\mathrm{C}(1+1)$	0.3154 (4)	0.5848 (4)	0.0676 (3)	0.054 (2)
C(15)	0.2751 (4)	0.5032 (4)	0.0229 (3)	$0.058(2)$
C(16)	0.1303 (6)	0.4849 (7)	-0.0555 (4)	0.126 (3)
$\mathrm{C}(17)$	0.1140 (5)	0.7176 (6)	0.0141 (5)	0.121 (3)
C(18)	0.2785 (5)	0.7707 (5)	0.1183 (4)	0.096 (3)
C(19)	0.4056 (5)	0.5822 (6)	0.0978 (4)	0.092 (3)
$\mathrm{C}(20)$	0.3170 (5)	0.4023 (5)	$-0.0038(4)$	0.108 (3)
C (21)	0.2999 (4)	0.5958 (4)	0.4047 (3)	0.067 (2)
$\mathrm{C}(22)$	(0.3207 (4)	0.7022 (4)	0.3729 (3)	$0.05512)$
$\mathrm{C}(23)$	0.2568 (4)	0.7696 (5)	0.3444 (4)	0.067 (2)
$\mathrm{C}(24)$	0.2762 (6)	0.8716 (5)	0.3156 (4)	0.089 (3)
C (25)	0.3577 (8)	0.9035 (6)	0.3155 (5)	0.111 (4)
C(26)	0.4184 (6)	0.8397 (7)	0.3414 (6)	0.127 (4)
C(27)	0.4014 (5)	0.7396 (6)	0.3705 (5)	0.095 (3)
C(28)	0.0785 (4)	0.5931 (4)	0.1625 (3)	0.058 (2)
$\mathrm{C}(29)$	0.0309 (4)	0.5551 (4)	0.2352 (3)	0.055 (2)
$\mathrm{C}(30)$	0.0241 (4)	0.6175 (4)	0.3014 (4)	0.065 (2)
C(31)	-0.0220 (4)	0.5871 (5)	0.3661 (4)	0.076 (2)
$\mathrm{C}(32)$	-0.0617 (4)	0.4905 (5)	0.3654 (4)	0.084 (3)
C(33)	-0.0558 (4)	0.4271 (5)	0.3002 (4)	0.075 (2)
C(34)	-0.0100 (4)	0.4576 (5)	0.2353 (4)	0.068 (2)

Table 2. Selected geometric parameters $\left(\AA^{\circ}\right)$

$\mathrm{Mo}(1)-\mathrm{O}(1)$	2.149 (3)	$\mathrm{Mo}(2)-\mathrm{O}(2)$	2.114 (3)
$\mathrm{Mo}(1)-\mathrm{O}(2)$	$2.109(4)$	$\mathrm{Mo}(2)-\mathrm{N}(2)$	1.744 (4)
$\mathrm{Mo}(1)-\mathrm{N}(1)$	1.743 (5)	$\mathrm{Mo}(2)-\mathrm{C}(11)$	2.318 (5)
$\mathrm{Mo}(1)-\mathrm{C}(1)$	2.287 (5)	Mo(2)-C(12)	2.415 (5)
$\mathrm{Mo}(1)-\mathrm{C}(2)$	2.323 (5)	$\mathrm{Mo}(2)-\mathrm{C}(1.3)$	2.460 (5)
$\mathrm{Mo}(1)-\mathrm{C}(3)$	2.419 (6)	$\mathrm{Mo}(2)-\mathrm{C}(14)$	2.400 (5)
$\mathrm{Mo}(1)-\mathrm{C}(4)$	2.467 (6)	$\mathrm{Mo}(2)-\mathrm{C}(15)$	2.284 (5)
$\mathrm{Mo}(1)-\mathrm{C}(5)$	2.432 (6)	$\mathrm{Mo}(2)-\mathrm{C}(28)$	2.231 (6)
$\mathrm{Mo}(1)-\mathrm{C}(21)$	2.244 (5)	$\mathrm{Mo}(2)-\mathrm{CP}(2)$	2.05
$\mathrm{Mo}(1)-\mathrm{CP}(1) \dagger$	2.06	$\mathrm{O}(3)-\mathrm{N}(1)$	1.234 (6)
$\mathrm{Mo}(2)-\mathrm{O}(1)$	2.134 (3)	$\mathrm{O}(4)-\mathrm{N}(2)$	1.227 (5)
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{O}(2)$	67.1 (1)	$\mathrm{O}(1)-\mathrm{Mo(2)}-\mathrm{C}(28)$	143.0(2)
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{N}(1)$	91.7 (2)	$\mathrm{O}(2)-\mathrm{Mo}(2)-\mathrm{N}(2)$	115.6 (2)
$\mathrm{O}(1)-\mathrm{Mol})-\mathrm{C}(21)$	141.3(2)	$\mathrm{O}(2)-\mathrm{Mol} 2)-\mathrm{C}(28)$	79.1 (2)

$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{CP}(1)$	108.5	$\mathrm{O}(2)-\mathrm{Mo}(2)-\mathrm{CP}(2)$	126.9
$\mathrm{O}(2) \mathrm{Mo}(1)-\mathrm{N}(1)$	$115.2(2)$	$\mathrm{N}(2)-\mathrm{Mo}(2)-\mathrm{C}(28)$	$88.0(2)$
$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{C}(21)$	$78.6(2)$	$\mathrm{N}(2)-\mathrm{Mo}(2)-\mathrm{CP}(2)$	117.4
$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{CP}(1)$	125.9	$\mathrm{C}(28)-\mathrm{Mo}(2)-\mathrm{CP}(2)$	104.6
$\mathrm{~N}(1)-\mathrm{Mo}(1)-\mathrm{C}(21)$	$86.7(2)$	$\mathrm{Mo}(1)-\mathrm{O}(1)-\mathrm{Mo(2)}$	$111.5(1)$
$\mathrm{N}(1)-\mathrm{Mo}(1)-\mathrm{CP}(1)$	118.8	$\mathrm{Mo}(1)-\mathrm{O}(2)-\mathrm{Mo(2)}$	$113.9(1)$
$\mathrm{C}(21)-\mathrm{Mo}(1)-\mathrm{CP}(1)$	106.0	$\mathrm{Mo}(1)-\mathrm{N}(1)-\mathrm{O}(3)$	$168.6(4)$
$\mathrm{O}(1)-\mathrm{Mo}(2)-\mathrm{O}(2)$	$67.3(1)$	$\mathrm{Mo}(2)-\mathrm{N}(2)-\mathrm{O}(4)$	$168.1(4)$
$\mathrm{O}(1)-\mathrm{Mo(2)-N(2)}$	$92.8(2)$	$\mathrm{Mo}(1)-\mathrm{C}(21)-\mathrm{C}(22)$	$115.3(4)$
$\mathrm{O}(1)-\mathrm{Mo}(2)-\mathrm{CP}(2)$	107.6	$\mathrm{Mo}(2)-\mathrm{C}(28)-\mathrm{C}(29)$	$116.5(3)$

$\dagger C P(1)$ and $C P(2)$ are the unweighted centroids of the $\mathrm{C}(1)-\mathrm{C}(5)$ and $\mathrm{C}(11)-\mathrm{C}(15)$ rings, respectively.

The H atoms were fixed in calculated positions $(\mathrm{O}-\mathrm{H} 0.87$ and $\mathrm{C}-\mathrm{H} 0.98 \AA$, with displacement parameters 1.2 times greater than those of the parent atoms). The orientations of the hydroxy and methyl H atoms were based on difference map positions. Some of the Cp * methyl C atoms exhibit markedly anisotropic displacement parameters. This is consistent with a combination of moderate molecular libration and some oscillation of the $C p^{*}$ ligands about the metal-ring centroid vectors and is a feature often noted for Cp^{*} complexes.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1985, 1992). Program(s) used to refine structure: TEXSAN. Molecular graphics: ORTEP (Johnson, 1965). Software used to prepare material for publication: TEXSAN.

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada for support of this work in the form of grants to PL. They also thank Professor R. C. Thompson of the Department of Chemistry, University of British Columbia, for his assistance with the magnetic susceptibility measurements (see supplementary material).

[^0]
References

Faller, J. W., Chase, K. J. \& Mazzieri, M. R. (1995). Inorg. Chim. Acta, 229, 39-45.
Johnson. C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Legzdins, P.. Lundmark, P. J. \& Rettig, S. J. (1993). Organometallics, 12, 3545-3552.
Molecular Structure Corporation (1988). MSCIAFC Diffractometer Control Sofiware. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1985, 1992). TEXSAN. Crystal Structure Analysis Package. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. C. (1968). Acta Cryst. A24, 351-359.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O. \& Watson, D. G. (1989). J. Chem. Soc. Dalton Trans. pp. SI-S83.

Acta Cryst. (1996). C52, 1115-1117
 mer-\{Bis[dimethyl(diphenylphosphino-methyl)silyl]amine- $\left.N, P, P^{\prime}\right\}$ dihydrido(iodo)iridium(III)

Michael D. Fryzuk, Patricia A. MacNeil, Steven J. Rettig* and Martin Stephan

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1. E-mail: xtal@xrayl.chem.ubc.ca
(Received 7 September 1995: accepted 7 December 1995)

Abstract

The $\left[\operatorname{Ir}(\mathrm{H})_{2} \mathrm{I}\left(\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{NP}_{2} \mathrm{Si}_{2}\right)\right]$ molecule has irregular octahedral coordination geometry, with the tridentate amine $\mathrm{NH}\left(\mathrm{SiMe}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}$ ligand meridionally coordinated. The amine $\mathrm{N}-\mathrm{H}$ bond is syn to the $\mathrm{Ir}-\mathrm{I}$ linkage as a consequence of intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonding. Important bond lengths include $\mathrm{Ir}-\mathrm{I}$ $2.7862(4)$, Ir-P $2.285(1)(\times 2)$, Ir-N $2.339(4)$, and $\mathrm{Ir}-\mathrm{H} 1.43$ (4) and 1.46 (5) A.

Comment

The geometrical parameters of $\left[\operatorname{Ir}(\mathrm{H})_{2} \mathrm{I}\left\{\mathrm{NH}\left(\mathrm{SiMe}_{2} \mathrm{CH}_{2}-\right.\right.\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2}\right\}$], (I), are very similar to those reported (Fryzuk, MacNeil \& Rettig, 1987) for the closely related compounds $\quad\left[\operatorname{Ir}(\mathrm{Me})(\mathrm{H}) \mathrm{I}\left\{\mathrm{NH}\left[\mathrm{SiMe}_{2} \mathrm{CH}_{2} \mathrm{P}\left({ }^{i} \mathrm{Pr}\right)_{2}\right]_{2}\right\}\right]$, $[\mathrm{Rh}-$ $\left.(\mathrm{H})_{2} \mathrm{I}\left\{\mathrm{NH}\left[\mathrm{SiMe}_{2} \mathrm{CH}_{2} \mathrm{P}\left({ }^{i} \mathrm{Pr}\right)_{2}\right]_{2}\right\}\right]$, $\left[\mathrm{Ir}(\mathrm{H})_{2} \mathrm{Cl}\left\{\mathrm{NH}\left(\mathrm{SiMe}_{2}-\right.\right.\right.$ $\left.\left.\left.\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}\right\}\right]$.toluene and $\left[\operatorname{Ir}(\mathrm{Me}) \mathrm{I}_{2}\left\{\mathrm{NH}\left(\mathrm{SiMe}_{2} \mathrm{CH}_{2}\right.\right.\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2}\right\}$].benzene (Fryzuk et al., 1992). Each of these

(I)
structures has slightly irregular octahedral coordination geometry with the tridentate $\mathrm{NH}\left(\mathrm{SiMe}_{2} \mathrm{CH}_{2} \mathrm{PR}_{2}\right)_{2}$ ligand meridionally coordinated to the metal atom with the halide ligand positioned syn to the amine $\mathrm{N}-\mathrm{H}$ bond. This arrangement, as well as the stereoselectivity of the reactions leading to the hydride complexes, results from the formation of a weak intramolecular $\mathrm{N}-\mathrm{H} \ldots$. halide hydrogen bond. In the title compound, this weak N $\mathrm{H} \cdots \mathrm{I}$ interaction has the geometry H...I 2.95 (5), N. . .I 3.536 (4) \AA and $\mathrm{N}-\mathrm{H} \cdots \mathrm{I} 135(4)^{\circ}$. The H. . I distance is significantly shorter than the sum of the van der Waals radii (3.35 Å; Bondi, 1964).

[^0]: Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry, including intermolecular contacts and torsion angles, together with analytical, IR, ${ }^{1} \mathrm{H}$ NMR, mass spectral and magnetic susceptibility data, and a discussion of the spectral data have been deposited with the IUCr (Reference: FG1147). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2 HU , England.

